1,745 research outputs found

    Field Measurement of Hydraulic Conductivity of Rocks

    Get PDF

    Reimagine BiSeNet for Real-Time Domain Adaptation in Semantic Segmentation

    Get PDF
    Semantic segmentation models have reached remarkable performance across various tasks. However, this performance is achieved with extremely large models, using powerful computational resources and without considering training and inference time. Real-world applications, on the other hand, necessitate models with minimal memory demands, efficient inference speed, and executable with low-resources embedded devices, such as self-driving vehicles. In this paper, we look at the challenge of real-time semantic segmentation across domains, and we train a model to act appropriately on real-world data even though it was trained on a synthetic realm. We employ a new lightweight and shallow discriminator that was specifically created for this purpose. To the best of our knowledge, we are the first to present a real-time adversarial approach for assessing the domain adaption problem in semantic segmentation. We tested our framework in the two standard protocol: GTA5 to Cityscapes and SYNTHIA to Cityscapes. Code is available at: https://github.com/taveraantonio/RTDA.Comment: Accepted at I-RIM 3D 202

    EigenPlaces: Training Viewpoint Robust Models for Visual Place Recognition

    Full text link
    Visual Place Recognition is a task that aims to predict the place of an image (called query) based solely on its visual features. This is typically done through image retrieval, where the query is matched to the most similar images from a large database of geotagged photos, using learned global descriptors. A major challenge in this task is recognizing places seen from different viewpoints. To overcome this limitation, we propose a new method, called EigenPlaces, to train our neural network on images from different point of views, which embeds viewpoint robustness into the learned global descriptors. The underlying idea is to cluster the training data so as to explicitly present the model with different views of the same points of interest. The selection of this points of interest is done without the need for extra supervision. We then present experiments on the most comprehensive set of datasets in literature, finding that EigenPlaces is able to outperform previous state of the art on the majority of datasets, while requiring 60\% less GPU memory for training and using 50\% smaller descriptors. The code and trained models for EigenPlaces are available at {\small{\url{https://github.com/gmberton/EigenPlaces}}}, while results with any other baseline can be computed with the codebase at {\small{\url{https://github.com/gmberton/auto_VPR}}}.Comment: ICCV 202
    corecore